Faithfulness Considerations for Virtual Prototyping of Systems-on-Chip

نویسندگان

  • Giovanni Funchal
  • Matthieu Moy
  • Florence Maraninchi
  • Laurent Maillet-Contoz
  • Jules Horowitz
چکیده

Virtual prototypes are simulators used in the consumer electronics industry. They enable the development of embedded software before the real, physical hardware is available, hence providing important gains in speed of development and time-to-market. Transaction-level Modeling (TLM) is a widely used technique for designing such virtual prototypes. Its main insight is that many micro-architectural details (i.e. caches, fifos and pipelines) can be omitted from the model as they should not impact the behavior perceived from a software programmer’s point-ofview. In this paper, we shall see that this assumption is not always true, specially for low-level software (e.g. drivers). As a result, there may be bugs in the software which are not observable on a TLM virtual prototype, designed according to the current modeling practices. We call this a faithfulness issue. Our experience shows that many engineers are not aware of this issue. Therefore, we provide an in-depth and intuitive explanation of the sort of bugs that may be missed. We claim that, to a certain extent, modified TLM models can be faithful without losing the benefits in terms of time-to-market and ease of modeling. However, further investigation is required to understand how this could be done in a more general framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of a Low-Latency Router Based on Virtual Output Queuing and Bypass Channels for Wireless Network-on-Chip

Wireless network-on-chip (WiNoC) is considered as a novel approach for designing future multi-core systems. In WiNoCs, wireless routers (WRs) utilize high-bandwidth wireless links to reduce the transmission delay between the long distance nodes. When the network traffic loads increase, a large number of packets will be sent into the wired and wireless links and can...

متن کامل

Congestion estimation of router input ports in Network-on-Chip for efficient virtual allocation

Effective and congestion-aware routing is vital to the performance of network-on-chip. The efficient routing algorithm undoubtedly relies on the considered selection strategy. If the routing function returns a number of more than one permissible output ports, a selection function is exploited to choose the best output port to reduce packets latency. In this paper, we introduce a new selection s...

متن کامل

Advanced Umts Receiver Chip Design Using Virtual Prototyping

Development of complex System on Chip (SoC) for modern communication systems has become more and more challenging. A designer has to bridge the gap between the requirements of the system at algorithmic level and its cycle true hardware description; the latter being synthesised for an Application Specific Integrated Circuit. This development requires numerous sub-steps, i.e., numerous intermedia...

متن کامل

Faster Complex SoC Design by Virtual Prototyping

Development of complex System on Chip (SoC) for modern communication systems has become more and more challenging. A designer has to bridge the gap between the requirements of the system at algorithmic level and its cycle true hardware description; the latter being synthesized for an Application Specific Integrated Circuit. This development requires numerous sub-steps, i.e., several intermediat...

متن کامل

C2lc20842c 758..764

Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true ‘‘laboratory.’’ The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010